The metric dimension and girth of graphs
نویسنده
چکیده مقاله:
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $G$ of order $n$ which has a cycle, $dim(G)leq n-g(G)+2$, where $g(G)$ is the length of the shortest cycle in $G$, and the equality holds if and only if $G$ is a cycle, a complete graph or a complete bipartite graph $K_{s,t}$, $ s,tgeq 2$.
منابع مشابه
the metric dimension and girth of graphs
a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...
متن کاملOn the metric dimension of Grassmann graphs
The metric dimension of a graph Γ is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. We consider the Grassmann graph Gq(n,k) (whose vertices are the k-subspaces of Fq, and are adjacent if they intersect in a (k− 1)-subspace) for k ≥ 2. We find an upper bound on its metric dimension, which is ...
متن کاملOn the Metric Dimension of Infinite Graphs
A set of vertices S resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of a graph G is the minimum cardinality of a resolving set. In this paper we study the metric dimension of infinite graphs such that all its vertices have finite degree. We give necessary conditions for those graphs to have finite metric dimension a...
متن کاملMetric Dimension for Random Graphs
The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).
متن کاملOn the metric dimension and fractional metric dimension for hierarchical product of graphs
A set of vertices W resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W . The metric dimension for G, denoted by dim(G), is the minimum cardinality of a resolving set of G. In order to study the metric dimension for the hierarchical product G2 2 uG1 1 of two rooted graphs G2 2 and G u1 1 , we first introduce a new parameter, the rooted ...
متن کاملMetric Dimension for Amalgamations of Graphs
A set of vertices S resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set of G. Let {G1, G2, . . . , Gn} be a finite collection of graphs and each Gi has a fixed vertex v0i or a fixed edge e0i called a terminal vertex or edge, respectively. The vertex-amalgamation of G1, ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 41 شماره 3
صفحات 633- 638
تاریخ انتشار 2015-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023